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Dingle's treatment of the influence of Landau level broadening on the de Haas-van Alphen effect is ex­
tended by the method of Lifshitz and Kosevich to include a Fermi surface of arbitrary shape. It is shown that 
a momentum- or energy-dependent linewidth can influence the period, phase, and amplitude of the magneti­
zation oscillations, although crude estimates indicate that in many cases the effects would be quite small. 

INTRODUCTION 

THE influence of Landau level broadening on the 
de Haas-van Alphen (DHVA) effect has been 

considered by Dingle1 for free electrons, where the effect 
of a Lorentzian line shape parameterized by a "collision 
time" r takes the form of the factor exp(—m^c/reH) in 
the oscillatory magnetization. We shall show by the 
method of Lifshitz and Kosevich2 (hereafter referred to 
as LK) that this result is applicable for an arbitrary 
Fermi surface, provided the effective mass ni* is defined 
as equal to dS/lirdE, where S is the appropriate ex­
tremal cross-sectional area inclosed by the Fermi surface 
in momentum space. We shall also show that kinemati-
cal or dynamical effects which cause the parameter r to 
be momentum or energy dependent may influence the 
period and phase as well as the amplitude of the oscilla­
tions. In particular, by allowing 1/r to contain a term 
proportional to the momentum in the direction of the 
applied magnetic field (the z axis), the relative impor­
tance of electrons with different pz is shifted so that the 
effective area determining the frequency of the oscilla­
tory magnetization is no longer the extremum. However, 
as indicated by crude estimates, such effects may 
generally be quite small. 

With the methods of quantum field theory, Bychkov3 

has treated the effect of elastic scattering of free elec­
trons by impurities. He has concluded that the Dingle 
factor is applicable if r=4r //7r, where r' is the mean 
free-collision time in the absence of an applied field, 
provided that l/vcr

f^>hvc/^, where vc is the cyclotron 
frequency and f the Fermi energy. For \/vcr

f<hvc/^ 
the effect of impurities can also reduce to the Dingle 
factor if other conditions are met.3 

PROOF FOR ARBITRARY FERMI SURFACE 

Following Dingle,1 let us suppose that the broadening 
of the nth Landau level can be described by a Lorentzian 
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distribution function given by 

dN=(—\— 
\TT/(E 

dE 

(E-Eny+(fi/Ty 
(i) 

This has been normalized on the interval (—°°,°°), 
which can also be taken as (En~E0,co) with negligible 
error, provided that the ground-state energy E0 and 
energy-level spacing are much larger than fi/r. Such 
broadening can be caused by the finite lifetime of the 
individual states or the lowering of the free-particle 
symmetry by the crystal field.4'5 Consequently, it could 
be energy-dependent, although the exact form it would 
take is as yet uncertain. We shall consider Eq. (1) as a 
phenomenological basis for our treatment. 

A system of noninteracting fermions has a free energy 
which from the standpoint of the grand canonical 
ensemble can be written as a sum over quantum states 
X available to each particle6 

F^-kTj: m{l+exp[f-£( \ ) /&r]}-f i \ r , (2) 
x 

where f is the Fermi energy. Diamagnetic properties of 
the system are predicted by retaining the summation 
over the En levels, each with a degeneracy L2eH/hc (we 
assume normalization for a cube of side L); each level 
must include an integration over the states lying below 
and above in energy as given by Eq. (1). The sum over 
pz can be approximated by an integral with the usual 
degeneracy factor L/h. For the present we shall ignore 
the spin contribution, which has been considered by 
Cohen and Blount7 and references given by them. Then 

4 P. G. Harper, Proc. Phys. Soc. (London) A68, 874, 879 (1955); 
A. D. Brailsford, ibid. A70, 275 (1957). 

6 J. Zak (to be published). 
6 L. Landau and I. M. Lifshitz, Statistical Physics (Pergamon 

Press, Ltd., London, 1958), p. 152. 
* M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960). 
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Eq. (2) is explicitly written as 

-kTVeH/ ft 

h2c 

Xln l+exp -

dZ £ / dp, 

K 2+(Vr) 2 ]"- 1"^. (3) 

the lower limit of the E' integration by zero, leaving 

i-2kTV/fi\ r oo r00 r 
(/0o*= —( — JRe/ # £ / <*£'/ #* 

I &3 \TT/ J-.EQ J"lJo J S>0 

dS 

0 

X—(£'-£, £.) lnfl+expf ) 
dE L \ kT / . 

The lower limit on the £ integration is a finite number, 
so that all integrals converge. We arbitrarily choose it 
to insure that all energies included in the "sum" are 
positive; later we shall replace it by — <*>, since E^>fi/r. 
Application of the Poisson formula to the sum over "n" 
[cf. LK Eq. (2.3)] permits us to write for the oscillatory 
part of F: 

X-
^exp{2irij[cS(E'-S, pz)/heH-y-]}' 

P+(ftA)2 
(8) 

Exchanging orders of integration and summation and 
integrating by parts, we find 

f -27 / f t 
<*>-= \ — A -

[ k? \TTT 

(F)0 

-2kTVeH/h\ rx « i"° rM 

( —)Re/ dlZ / dn dp, 
h2C \TTTJ J-Ea i™1 J—i/2 J~«, 

) R e £ / dE'fl 
•J i-iJo \ kT J 

rE' r r dS 
X dE" dp A dt--(E"-i,pz) 

Jo J s>o J-Bo dE" 

Xln l+exp 
t -£w (^) -r 

kT 

XexpiHrjn^+ih/ryjr1- (4) 

The integral over "n" can be changed to one over E by 
using the Bohr-Sommerfeld quantum condition for 
motion in the plane perpendicular to H [LK Eq. (1.3)]: 

X-
explicjS(E"-Z, p,)/fieH-i2rri\ l 

P + W T ) J 
• 

(9) 

/ 
P«dQv=(n+y)h, (5) 

which reduces to the quantum condition for the area 
contained within the projection of each particle's tra­
jectory on the transverse plane in momentum space, 

S(E,p,) = (n+y)heH/c. 

Equation (4) then becomes 

-2kTV/fi 
• J R e / 

rt-E-t-

(6) 

where f(x) = (l+ex)~~1 is the Fermi function. The inte­
grals can be approximated by noting that the primary 
contribution of interest from the integrand is in the 
region £ " « £ ' and £«0 where (dS/dpz)Pm=0. This 
latter condition defines "pmP Then the area in the phase 
factor can be expanded as 

dS 
S{E"~ f, p,)**S(E',pm)+—(E',pm)lE» i-E'~\ 

dE 

+ i—(E' ,pm) tp,-pmy. (io) 
dp*2 

With the assumptions that the £ dependence of r and 
dS/dE" can be neglected and that E^^/T SO that the 
lower limit of the £ integral is effectively — <*>, the £ 
integration can be readily performed: 

( * % - o = • 
Wr. 

es 
X—(E,p.) In 

dE 

W/" # £ I dE[ dp, 
/ J—EQ H J O J Syo 

1+rap(-^)J 
—) / # exp - — — ( t f , ^ }[?+(ft/r)t]-

= exp 

X-
exp[2irij(cS/heH—7)]' 

£2+(Vr)2 

(E',pm)\ = exp{-j/y.*r}, (11) 

(7) 

By making the further change of variable E'=E+%, 
(F)OBG can be seen to have the same form as Eq. (7), but 
with the E' integration taken over the interval (£,<*>). 
Since the maximum contribution of the integrand comes 
from the region E^fi^ft/r and £<fo/r, we approximate 

where vc*—eH/ni*c and tn*~dS/27rdE. If r is inde­
pendent of Ef and pz, this factor can be removed from 
the integral and be recognized as the factor first derived 
by Dingle.1 It also can conveniently be written as 
exp(-2>ir2jkTD/p*H), where TD is defined to be the 
"Dingle temperature"—previously called the "x factor" 
—and /3* is efo/m*c. The remaining integrals are per­
formed as in the treatment of LK, and with the insertion 

file:///tttJ
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of the cos(jirgm*/2m) from the spin dependence as 
defined by Cohen and Blout,7 we obtain as our end result 

/eH\3/2\d2S 
(F)osc=2VkT[ — ) 

\hcJ \dpz
2\^Pni 

oo exp(-2<K*jkTD/0*H) 

y-i i3 / 2 smh(2>ir*jkT//3*H) 

XcOSj 

Since a single particle moving through a cloud of fixed, 
hard-core scattering centers has a mean free path inde­
pendent of its speed, its collision time is inversely pro­
portional to its speed or momentum. In addition, lattice 
broadening of levels may contribute an energy-de­
pendent term to the linewidth, which is additive to 1/r 
at least in the limit fi/r<^fi*H.4 As a simple phenomeno-
logical description which is mathematically tractible, 

we assume 
JC 7T 

S(^Pm)-2TJy^F-
fieH 4J 

l / T = l / T 0 + a o | * . | + a i ( £ ) . (13) 

X co$(J7rg?n*/2ni). (12) 

The upper sign is used when S(£,pm) is a maximum, the 
lower for a minimum. As usual, the magnetization is 
given by M = - (dF/dH)T,v-

ENERGY AND MOMENTUM-
DEPENDENT BROADENING 

The lifetimes of electronic states in metals at low 
temperature are determined primarily by the frequency 
of collision with impurities and lattice imperfections. 

The £ integral in Eq. (9) can be performed as before, 
leaving the pz integral, which for a$~§ was evaluated 
by the method of stationary phase about the point pm 

where (dS/dpz)Pm=0. 
Near this point S(E;/,pz) can be expanded as 

S(E",p.) «5x(£")- e(E'%p-pmJ (14) 

where e>0 if S has a maximum at pm. For ao^O, the 
stationary point is moved off the real, axis by an amount 
ia<jhin*/2e, and the integral can be evaluated by the 
method of steepest descent. Continuing the evaluation 
of the remaining integrals in Eq. (9) by asymptotic 
approximations, we find the equivalent to Eq. (12): 

(F) 
eH\*12 

0SC~2VkT( — ) |2e( f ) | - 1 / 2 Re 
\hcJ 

ih/dai\ 1 1 ] 

X sinh 

2AdE/fJ*-i 

2ir'2kT-l r<irkT/dai\ 
— — cos ( — 1 
^ J U c*\dE/ r 

E t m exp{- i [ l / ro+«o#«+ai ( f ) ]Ac*> 

- i cosh 
r2ir2kT 

(3*H J 

'irkT/daA * 

. v* \ dE/t. 

\ icj r (afim*)2" 
Xexp Si 1— — 

[fteH L 4e5i . 

•1 /jirgm*\ 

U \ 2m I 
-i2irjy:jFi-\ cosl -

4) \ 2m 
(15) 

Since the actual form of a\(E) is unknown, we must 
resort to crude estimates to determine the importance 
of the correction terms in Eq. (15). Assuming a linear de­
pendence for ai(E), we let (dai/dE)^ l/r0f, so that for 
f ~ 1 0 - 2 eV, hdcu/dEssh/T&^Vt-u/To. As DHVA ex­
periments have been conducted on materials with r0 as 
small as 10~12 sec,8 this term can be appreciable for such 
extreme cases. The other energy-dependent correction 
term is 

kT/dai\ kT /kTD\/kT\ 

vc*\dE/[~tvc*T0~ \ r A/3*#/ 

which becomes \Qrl(kT/p*H) if TD**1°K. This term 
is therefore more important at lower fields, where 
kT/(3*H~l. I t is thus possible that if (dai/dE)$ is large, 
these terms could make corrections to the phase or 

8 P, Shoenberg, Phil. Trans. Roy. Soc. London A245, 1 (1952). 

frequency of magnetization oscillation, depending upon 
the field dependence of a\(E). 

We shall now consider the explicit frequency correc­
tion term, (oi($m*)2/4eSi. For an ellipsoid of revolution, 
S=2<irm*(E-pz

2/2mz), and with a0
2~ l/r0

2m£, we find 
this term is about (fi/£irTo£)2~ (10~14/ro)2 and con­
sequently is of second order and negligible. However 
this term might be noticeable if dr/dpz were anoma­
lously large at the Fermi surface. 

In conclusion, we wish to emphasize that the above 
estimates necessarily have been crude, because the 
energy and pz dependence of the linewidths are un­
known; however, our results indicate that such depend­
ence could lead to noticeable effects other than an 
exponential decrease in amplitude. 
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